Reg. No. : \square

Question Paper Code : 80765

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Third Semester

Civil Engineering

MA 2211/MA 1201 A/080100008/080210001/10177 MA 301/CK 201/MA 31 — TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to All Branches)
(Regulations 2008/2010)
(Also Common to PTMA 2211 for B.E. (Part-Time) Second Semester - All Branches - Regulations 2009)

Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A $-(10 \times 2=20$ marks $)$

1. Find the constant term in the expansion of $\cos ^{2} x$ as a Fourier series in the interval $(-\pi, \pi)$.
2. Define Root Mean square value of a function $f(x)$ over the interval (a, b).
3. Find the Fourier Sine Transform of $e^{-3 x}$.
4. If $\mathcal{F}\{f(x)\}=F(s)$, prove that $\mathcal{F}\{f(a x)\}=\frac{1}{a} \cdot F\left(\frac{s}{a}\right)$.
5. Form the PDE by eliminating the arbitrary constants ' a ', ' b ' from the relation $4\left(1+a^{2}\right) z=(x+a y+b)^{2}$.
6. Solve $\left(D^{3}-4 D^{2} D^{\prime}+4 D D^{\prime 2}\right) z=0$.
7. An insulated rot of length 60 cm has its ends at A and B maintained at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively. Find the steady state solution of the rod.
8. A plate is bounded by the lines $x=0, y=0, x=l$ and $y=l$. Its faces are insulated. The edge coinciding with x-axis is kept at $100^{\circ} \mathrm{C}$. The edge coinciding with y-axis is kept at $50^{\circ} \mathrm{C}$. The other two edges are kept at $0^{\circ} \mathrm{C}$. Write the boundary conditions that are needed for solving two dimensional heat flow equation.
9. Find the Z-transform of $\frac{1}{n}$.
10. Find the inverse Z-transform of $\frac{z}{(z+1)^{2}}$

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the Fourier series of $f(x)=(\pi-x)^{2}$ in $(0,2 \pi)$ of periodicity 2π.
(ii) Obtain the Fourier series to represent the function $f(x)=|x|$, $-\pi<x<\pi$ and deduce $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$.

Or
(b) (i) Find the half-range Fourier cosine series of $f(x)=(\pi-x)^{2}$ in the interval $(0, \pi)$. Hence find the sum of the series $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots+\infty$.
(ii) Find the Fourier series upto second harmonic for the following data for y with period 6 .

$$
\begin{array}{lcccccc}
x: & 0 & 1 & 2 & 3 & 4 & 5 \tag{8}\\
y: & 9 & 18 & 24 & 28 & 26 & 20
\end{array}
$$

12. (a) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}1-x^{2}, & |x| \leq 1 \\ 0, & |x|>1\end{array}\right.$. Hence show that
(i) $\int_{0}^{\infty} \frac{\sin s-s \cos s}{s^{3}} \cos \left(\frac{s}{2}\right) d s=\frac{3 \pi}{16}$ and
(ii) $\int_{0}^{\infty} \frac{\left(x \cos x-\sin x^{2}\right)}{x^{6}} d x=\frac{\pi}{15}$.

Or
(b) (i) Using Fourier cosine transform, evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$.
(ii) Find the function whose Fourier series transform is $\frac{e^{-a s}}{s}(a>0)$.
13. (a) (i) Find the singular integral of $z=p x+q y+p^{2}+p q+q^{2}$.
(ii) Solve the partial differential equation $(x-2 z) p+(2 z-y) q=q-x$.

Or
(b) (i) Solve : $\left(D^{2}+3 D D^{\prime}-4 D^{\prime 2}\right) z=\cos (2 x+y)+x y$.
(ii) Solve : $\left(D^{2}-D D^{\prime}+2 D\right) z=e^{2 x+y}+4$.
14. (a) A uniform elastic string of length 60 cms is subjected to a constant tension of 2 Kg . If the ends fixed and the initial displacement $y(x, 0)=60 x-x^{2}, 0<x<60$, while the initial velocity is zero, find the displacement function $y(x, t)$.

Or
(b) Solve the problem of heat conduction in a rod given that the temperature function $u(x, t)$ is subject to the condition, $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq l, t>0$.
(i) $\quad u$ is finite as $t \rightarrow \infty$
(ii) $\frac{\partial u}{\partial x}=0$ for $x=0$ and $x=l, t>0$
(iii) $u=l x-x^{2}$ for $t=0,0 \leq x \leq l$.
15. (a) (i) Find $Z(\cos n \theta)$ and hence deduce $Z\left(\cos \frac{n \pi}{2}\right)$.
(ii) Using Z-transform solve : $y_{n+2}-3 y_{n+1}-10 y_{n}=0, y_{0}=1$, and $y_{1}=0$.

Or
(b) (i) State and prove the second shifting property of Z-transform.
(ii) Using convolution theorem, find $Z^{-1}\left[\frac{z^{2}}{(z-a)(z-b)}\right]$.

